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Learning Objectives



For Markov chains

I What is a steady state simulation and when is it well
posed?

I For any well posed simulation problem:
I a steady state distribution exists for the chain
I the chain is Harris recurrent

I (positive recurrent but for measurable spaces)



Harris recurrent chains

I Aperiodic Harris recurrent chains are ergodic
I They exhibit regenerative structure under certain conditions

I Regenerative structure can be exploited to split a long chain
into i.i.d tours that yield

I parallelizable estimators
I confidence intervals
I bias reduction

I Convergence to steady state is a direct consequence of
regenerative structure

1. Bruno and I recently were discussing how aperiodicity conditions
can be relaxed

2. We will see one case today (I am working on understanding other
cases too)



Extensions

I Most discrete event simulations can be transformed to
SMPs (Glynn 2006)

I These can be converted to Markov processes
I ∴ regenerative sampling has broad applicability



Why is Regenerative structure useful? 1. Lets do the punch line first and start by defining the task



The Steady State simulation problem (SSSP)

I Given
I a Markov chain Φ = {Xn : n ≥ 1} over state space S with

kernel P
I a bounded real valued function f : S → R

I Compute

r(f) = lim
n→∞

1
n

n∑
i=1

f(Xi)︸ ︷︷ ︸
=rn(f)

if such a limit exists.

1. We know from our own experience/background that this limmit
only exists if the markov chain is ergodic

2. For RW on graphs that means a connected non bipartite graph



The natural estimator for SSSP

I For some finite t, and for an arbitrary X1 = x, sample a
chain X1, . . . , Xt and compute

rt(f, x) = 1
t

t∑
i=1

f(Xi)

I Clearly E[rt(f,X1)] = r(f) when t→∞
I When r(f) is invariant to the starting state

1. The asymptotic nature is due to initialization bias
2. We will cover this invariance later



Disadvantages

I Since initialization bias in rt(f, x) goes to 0 asymptotically
I It makes sense to run one long chain rather than multi thread

I For example mixing times for simple graph RWs are
≥ dia(G)2

20 log(|V |) (Levin and Peres 2017)
I Confidence intervals and higher moments:

I Can be upper bounded using eigen values of P e.g. Ribeiro
and Towsley (2012)

I May be estimated by exploiting some structure e.g. Glynn
(2006)

1. Eigen value bounds are usually loose and eigen values are not
readily available

2. Structure may be hard to find in general chains



Regenerations

I On the other hand if chains can be split
I Yj = (XTj−1 , XTj−1+1, . . . , XTj )
I Yj and τj = Tj − Tj−1 are i.i.d sequences

I We can estimate r(f) as

1
J

∑J
j=1

∑
X∈Yj

f(X)
1
J

∑J
j=1 τj

I Since there is no mixing time/ burn-in multiple copies of
the above estimators are all i.i.d estimators for r(f)

I estimators for higher moments can be easily constructed
I examples in Glynn (2006) and Avrachenkov, Ribeiro, and

Sreedharan (2016)

1. Jacknife estimates for bias removal are possible



However splitting is not so easy



How do we get there?

I Well posed steady state simulation
I → Harris Recurrence
I → Regenerations where Doeblin’s condition holds



Well-Posedness of an SSSP

I Recall the goal

r(f) = lim
n→∞

1
n

n∑
i=1

f(Xi)︸ ︷︷ ︸
=rn(f)

I The problem of computing r(f) given Φ is well posed iff

lim
n→∞

Exrn(f) = r(f)

I for any bounded real function f on S regardless of x ∈ S
I I.e. the limiting behavior of Φ is invariant to how the

simulation is started (Glynn 1982)

1. Informally limit needs to exist
2. Formally we say that the simulation problem is wellposed iff the

following holds - by convention Ex[·] = E[·|X1 = x]



Consequences of Well-Posedness

I If the steady state simulation problem is well posed we can
show that

I there exists π such that
∑
x π(x)P (x, y) = π(y)

I and r(f) =
∑
x π(x)f(x) = Eπ[f(X)]

I Φ is Harris recurrent (Glynn 1982)



Proof Sketch

I For any A ⊆ S let π(A) = r(IA)
I Due to well posedness

r(IA) = lim
n→∞

1
n

n∑
i=1

IXi∈A

I Sum r(IA) over all A to see that it is a probability measure
over S

I Decomposing f as f(X) =
∑

x∈S IX=xf(x) we see that
r(f) =

∑
x π(x)f(x)

1. Since well posedness applies to all f
2. There also is a measure theoretic proof for how π is the steady

state distribution for Φ and this convergence implies ergodicity
and therefore Harris Recurrence



π-Harris Recurrence

I Given a measure π, Φ is π-Harris (Positive) Recurrent if
I For each A ⊂ S if π(A) > 0 for all x ∈ S

Px

( ∞∑
i=1

IXi∈A =∞
)

= 1

I Recall that we had seen that

π(A) = lim
n→∞

1
n

n∑
i=1

IXi∈A

1. Seemed to me that HR is a measure theoretic extension of the
definition of positive recurrence.

2. Need to read more
3. if the chain doesn’t visit A infinitely often the measure would be 0



Pause

I We now know that well posed simulation problems on
Markov chains involve Harris recurrent Markov chains

I Why is this important?



Harris Recurrence and Uniform Ergodicity

I If Φ is Harris recurrent and aperiodic (Meyn and Tweedie
1993) (Theorem 13.3.3)

‖
∫
λ(dx)Pn(x, ·)− π‖ → 0 , n→∞ ,

I If S is finite we get uniform ergodicity where for some ρ < 1

‖Pn(x, ·)− π‖ ≤ ρn ,



A more interesting case (Meyn and Tweedie 1993)
(Theorem 16.2.4)

I If, for some m, ∀x ∈ S and A ∈ B(S), Φ satisfies

Pm(x,A) ≥ (1− ρ)ν(A)

where ν is a probability measure and 0 < ρ < 1 we have

‖Pn(x, ·)− π‖ ≤ ρn/m ,

and vice versa.
I This is called Doeblin’s condition.



Splitting Φ into tours

Assume m = 1 and rewrite P (x,A) as

P (x,A) = (1− ρ)ν(A) + ρQ(x,A)

so

Q(x,A) = (P (x,A)− (1− ρ)ν(A))
ρ

I At every step toss a biased coin with H probability ρ.
I If you sample T sample the next state from ν else Q
I Note how the chain regenerates at each T
I Mykland, Tierney, and Yu (1995) is a direct application of

this result



Proof sketch for convergence

I Start two coupled chains, Φ and Φ′

I Φ′ is started in steady state, i.e. is always dist w.p. π
I Both chains use the same random noise generator to sample

transitions
I Once the chains collide,

I they’ll stay together and both will be dist w.p. π

I From the coupling inequality we have

‖Pn(x, ·)− π‖ ≤ P (Φn 6= Φ′
n) .

I Sampling n heads in a row implies Φn 6= Φ′n

∴ ‖Pn(x, ·)− π‖ ≤ P (flipping n H in a row) = ρn

which completes the proof.

1. Transitions are as sampled above



Conclusion

I We saw how well posed simulation problems have Harris
recurrence

I Doeblin’s condition guarantees unifrom ergodicity and
enables splitting and thus regenerative sampling



Future Lectures

I Coupling based methods for regeneration in general MCs
I Atom based ergodicity
I Regenerative estimates for finite state MCs
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